Pertussis vaccine: does strain variation matter?

A/Prof Ruiting Lan

University of New South Wales, Sydney, NSW 2052, Australia
4 questions

• Is *B. pertussis* changing?
• Are the changes in response to vaccination?
• Are these changes advantageous to the bacterium?
• How can we use this information to control pertussis?
Is *B. pertussis* changing?

• Neutral markers:
 – Multilocus variable number tandem repeats analysis (MLVA)
 – Single nucleotide polymorphism typing (SNP typing)

• Isolates from over 40 years

• Isolates from the recent epidemic
Major Australian MLVA types

SNP types

Australian isolates
Other international isolates

Japan isolates
Old isolates

Are the changes in response to vaccination?
Vaccines

- Whole cell vaccine (WCV): 1950s to 1997
- Acellular vaccine (ACV): 2000 onwards
- Transition period, WCV or ACV: 1997-1999
Frequency of SNP clusters by vaccine period in Australia
Variation in genes encoding acellular vaccine antigens

- Acellular vaccine (ACV) components:
 - Pertactin (Prn)
 - Pertussis toxin (PTX)
 - Filamentous haemogglutinin (FHA)
 - Fimbriae (Fim2 and Fim3)

- $ptxP$ – pertussis toxin promoter
Antigenic gene variation

<table>
<thead>
<tr>
<th></th>
<th>Prn</th>
<th>Ptx(A)</th>
<th>FhaB</th>
<th>Fim2</th>
<th>Fim3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACV</td>
<td>1</td>
<td>A2</td>
<td>1</td>
<td>2-1</td>
<td>3-A</td>
</tr>
<tr>
<td>Cluster I</td>
<td>2</td>
<td>A1</td>
<td>1</td>
<td>2-1</td>
<td>3-A/B</td>
</tr>
<tr>
<td>Cluster II</td>
<td>3</td>
<td>A1</td>
<td>1</td>
<td>2-1</td>
<td>3-A</td>
</tr>
<tr>
<td>Cluster III</td>
<td>1</td>
<td>A1</td>
<td>1</td>
<td>2-1</td>
<td>3-A</td>
</tr>
<tr>
<td>Cluster IV</td>
<td>1</td>
<td>A1</td>
<td>1</td>
<td>2-2</td>
<td>3-A</td>
</tr>
</tbody>
</table>
Strain variation in other parts of the world
UK
The Netherlands
Sweden

Distribution of *ptxP* alleles in strains collected during 1997 until 2006 in the Gothenburg area and in the Rest of Sweden.

<table>
<thead>
<tr>
<th>Area for sample</th>
<th>Gothenburg</th>
<th>Rest of Sweden</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ptxP allele</td>
<td>1</td>
<td>109 (21)</td>
<td>998 (33)</td>
</tr>
<tr>
<td>Number (%)</td>
<td>3</td>
<td>403 (79)</td>
<td>2001 (67)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>512 (100)</td>
<td>2999 (100)</td>
</tr>
</tbody>
</table>

Advani et al. Vaccine 2011 29 3438
Europe (Netherlands and Sweden)

<table>
<thead>
<tr>
<th>ST</th>
<th>ptxP1</th>
<th>ptxP3</th>
<th>ptxP4</th>
<th>ptxP6</th>
<th>continent</th>
<th>Earliest isolation year of strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Africa</td>
<td>1 1999</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Europe</td>
<td>1 2000</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>27 1997</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td>14 1999</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1 2000</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1 2000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3 1973</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td>15 1986</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>30</td>
<td></td>
<td>28</td>
<td></td>
<td>2 1971</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>2 1990</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1 1990</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>18 1975</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td></td>
<td>7 1975</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 1947</td>
</tr>
</tbody>
</table>

van Gent et al. (2011) PLoS ONE 6(5): e20340
Are the changes advantageous?
Prn2

- Allelic specific epitope
 - Prn type-specific antibodies (He et al. 2003)
 - Advantage

- Mouse colonisation
 - Prn1>Prn2 and Prn3 (van Gent et al. 2011)
 - Disadvantage
ptxP3 and pertussis toxin

- *ptxp3* versus *ptxp1* [Mooi et al. (2009)]
 - Increases Ptx production (PtxA1) 1.6x
 - More virulent
Mouse challenge experiments

How can we use this information to control pertussis?

Vaccine
- Prn1
- PtxA2

Strain
- Prn2
- PtxA1
- ptxP3
Acknowledgements

• Dr Vitali Sintchenko
• Prof Lyn Gilbert
• Prof Peter Reeves
• Prof Frits Mooi

• Dr Ram Marhajan
• Dr Sophie Octavia
• Jacob Kurniawan
• Wai-Fong Chan
• Connie Lam

• Generous donors of isolates
 Drs David Andresen, Kazunari Kamachi, Shane Byrne, Ian Carter, John Tapsall, Margaret Ip, Qiushui He, Nicole Guiso, Raymond Tsang, Lucia Tondella, Joanna Cheng

Funding support
The National Health and Medical Research Council of Australia