Objectives

- To provide an overview of vaccine development from laboratory bench to approval for licensure
- To describe the purpose and characteristics of clinical vaccine trials
- To highlight that clinical vaccine trials are integral to successful vaccination programmes
- To identify issues in vaccine trials in resource poor settings

Vaccine development process…

- Long
 - multiple steps that each require careful validation
- Collaborative
 - scientific, manufacturing & regulatory organisations
- Expensive
 - US $100-300 million

Primary aims of vaccine development

- To establish vaccine safety, immunogenicity & efficacy in the population for whom the vaccine is intended = target population
- To establish that batches of vaccine manufactured on a large scale are consistent in content & quality

Steps in vaccine development

- Identification of micro-organism
- Studies to determine factors that cause & protect against disease
- Development of animal models
- Development of vaccine candidates
- Preclinical studies of safety & immunogenicity
- Prototype vaccines for human testing
- Efficient manufacturing process
- Extensive clinical evaluation

What is a clinical trial?

- Prospective study designed to assess the effect of an intervention in a group of individuals
- Representative sample of individuals used to make inferences about the effect of the intervention on the target population
- Controlled, randomised & double blind design minimises bias
Essential components of clinical trials

- **Protocol**
 - independent ethics committee

- **Ethical & scientific standards**
 - Declaration of Helsinki 1964

Clinical trials in vaccine development

- **Pre-licensure**
 - Phase I - safety & immunogenicity
 - Phase II - immunogenicity & safety
 - Phase III - efficacy
 - Consistency & bridging studies

- **Post-licensure**
 - Phase IV - effectiveness & safety

Phase I clinical vaccine trial

Initial data on vaccine safety & immunogenicity

- Close safety monitoring
 - common and severe reaction
 - conservative stopping rules

- Investigate underlying immune mechanisms
 - immunological memory
 - immediate post vaccination antibody levels

- Subjects = Adults n=10-100
- Design = controlled or uncontrolled

Phase II clinical vaccine trials

- Identify optimal vaccine regime for Phase III trials
 - vaccine dose, adjuvants, composition
 - minimum number & timing of doses
 - age-specific immune responses
 - shape & duration of immune responses
 - interaction with other vaccines

- Safety
 - local & systemic reaction

Phase II clinical vaccine trials

- Subjects
 - Target group
 - n = 50 - 500

- Design
 - Double blind randomised controlled trial

- Compare vaccine immunogenicity & safety in the target population to the control group
Phase III clinical vaccine trials
Vaccine efficacy in the target population
- Vaccine efficacy
- Active safety monitoring for serious events
- Secondary objectives
 - age-specific effects
 - duration of protection
 - effect on carriage & infectivity of micro-organisms
 - establish laboratory correlate of protection

NCIRS
National Centre for Immunisation Research & Surveillance

Phase III clinical vaccine trials
Vaccine efficacy in the target population
- Subjects
 - Target group
 - n = 1000 - 150,000
- Design
 - Double blind randomised controlled trial

NCIRS
National Centre for Immunisation Research & Surveillance

Consistency studies
- Assess safety & immunogenicity of three consecutive batches of vaccine that are manufactured at commercial scale to demonstrate consistency of manufacture

NCIRS
National Centre for Immunisation Research & Surveillance

<table>
<thead>
<tr>
<th>Type of assay</th>
<th>OPV</th>
<th>Measles</th>
<th>Rubella</th>
<th>MMR</th>
<th>Varicella</th>
<th>JE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test period (days)</td>
<td>35</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>Sterility</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Virus Content</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Identity</td>
<td>Δ</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Abnormal toxicity</td>
<td>O</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermostability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final container</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
</tr>
<tr>
<td>Residual moisture</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
</tr>
</tbody>
</table>

No. of test item:
- O: Required for official release testing;
- Δ: Exempted or replaced

NCIRS
National Centre for Immunisation Research & Surveillance

Bridging studies
- Determine effect of change in any one parameter on vaccine’s clinical performance
 - population
 - manufacturing scale
 - formulation
 - dosing schedule

NCIRS
National Centre for Immunisation Research & Surveillance
Vaccine licensure

- Data on vaccine safety, efficacy & manufacture
- Government agencies use strict regulations & international standards to review application
 - Food and Drug Authority (FDA) US
 - Therapeutic Goods Administration (TGA) Australia
- Approval of application - registration
 - Australian Drug Evaluation Committee
 - Vaccine marketed for community use

Requirements for Vaccine Licensure

1. Clearly defined formulation
2. Acceptably pure and potent
3. Suitable quality control
4. Demonstrable reproducibility of lots
5. Acceptable safety
 - In large numbers
 - In diverse populations
 - In target population
6. Suitable protection
 - Best evidence: Direct evidence of clinical protection
 - Surrogate evidence: Suitable immune responses

The granting of a product license for a new drug merely means that any hazards unacceptable to the licensing authority have not been identified.

It does not ensure that a medicine will always be safe in subsequent prescribing practice”.

Liz Swain, SB Director, UK Post-marketing Group
November 2000, Singapore

Limitations of pre-licensure studies

- Direct individual effects of vaccination only
- Indirect population-level effects unknown
 - herd immunity
 - ecological effects
- Some adverse effects not identified
 - Low numbers in trials
 - to detect an attributable risk of
 1/10,000 vaccinees requires 30,000 vaccinees (+30,000 controls)
 - rare
 - delayed onset

Phase IV post-licensure evaluation

- Vaccine effectiveness in the real world
- Disease incidence & severity
- Safety
- Subjects
 - Vaccinees or total population
 - n = variable - millions
- Design = observational
How does this apply to clinical vaccine trials in resource poor settings?

Issues for developing countries
- Poor regulatory and surveillance systems
 - Pre and post licensure
 - India – FDA equivalent has 3 technical staff - pharmacists
- Need to strengthen clinical trial monitoring
 - Lab quality
- Ethical issues
- Rapid increase in number of vaccine production companies

Vaccines and regulatory authorities
- “Trickle down” from industrialised to developing countries
- Approval for vaccine use in some countries comes from national regulatory authorities (NRA), eg FDA, EMEA
- Others lack basic infrastructure to do this
- Development of a Developing Country Vaccine Manufacturers Network

Strengthening capacity for clinical trial monitoring
- WHO set up training curriculum for trial investigators and help for ethics committees and clinical monitors
- Data management support
 - Eg; Templates for case reporting forms
- Quality support for laboratories

Ethical considerations
- Age of consent for children varies
 - US >7 years old, others >12 years old – OLDER
 - Children often required to co-sign consent with parents
- Illiteracy
- No trial should have a placebo arm
- Should vaccine be trialed in developing country at the same time as developed country
 - India Jun 2005 agreed to allow trials of same phase as other countries
 - India – erythromycin vaginal pellets tested on poor illiterate women in West Bengal in 2002, NO regulatory approval
 - Industry sponsored trials with financial inducements
 - Higher disease burden - ?accelerated introduction

Ethics - Rotavirus
- Rotavirus vaccine withdrawn in US after intussusception risk – pending trials in India, Bangladesh, Sth Africa halted
- High disease burden countries
- If vaccine is not safe enough for US, is it OK for other countries
- New vaccine trial needs many more subjects
- Recently licensed in Mexico
Summary

- Clinical vaccine trials are fundamental in pre-licensure vaccine evaluation
- Safety, immunogenicity & protective efficacy are measured in double blind RCT
- Independent ethics review, regulatory approval & trial monitoring are mandatory
- Vaccine evaluation is continued post-licensure
- Resource poor settings – particular issues

Acknowledgements

- International Vaccine Institute

- Thank you for listening!